Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
2023 9th International Conference on Advanced Computing and Communication Systems, ICACCS 2023 ; : 2182-2188, 2023.
Article in English | Scopus | ID: covidwho-20238239

ABSTRACT

The world has altered since the World Health Organization (WHO) designated (COVID-19) a worldwide epidemic. Everything in society, from professions to routines, has shifted to accommodate the new reality. The World Health Organization warns that future pandemics of infectious diseases are likely and that people should be ready for the worst. Therefore, this study presents a framework for tracking and monitoring COVID-19 using a Deep Learning (DL) perfect. The suggested framework utilises UAVs (such as a quadcopter or drone) equipped with artificial intelligence (AI) and the Internet of Things (IoT) to keep an eye on and combat the spread of COVID-19. AI/IoT for COVID-19 nursing and a drone-based IoT scheme for sterilisation make up the bulk of the infrastructure. The proposed solution is based on the use of a current camera installed in a face-shield or helmet for use in emergency situations like pandemics. The developed AI algorithm processes the thermal images that have been detected using multi-scale similar convolution blocks (MPCs) and Res blocks that are trained using residual learning. When infected cases are detected, the helmet's embedded Internet of Things system can trigger the drone system to intervene. The infected population is eradicated with the help of the drone's sterilisation process. The developed system undergoes experimental evaluation, and the findings are presented. The developed outline delivers a novel and well-organized arrangement for monitoring and combating COVID-19 and additional future epidemics, as evidenced by the results. © 2023 IEEE.

2.
Neurocomputing ; 499: 63-80, 2022 Aug 14.
Article in English | MEDLINE | ID: covidwho-20241580

ABSTRACT

Infection by the SARS-CoV-2 leading to COVID-19 disease is still rising and techniques to either diagnose or evaluate the disease are still thoroughly investigated. The use of CT as a complementary tool to other biological tests is still under scrutiny as the CT scans are prone to many false positives as other lung diseases display similar characteristics on CT scans. However, fully investigating CT images is of tremendous interest to better understand the disease progression and therefore thousands of scans need to be segmented by radiologists to study infected areas. Over the last year, many deep learning models for segmenting CT-lungs were developed. Unfortunately, the lack of large and shared annotated multicentric datasets led to models that were either under-tested (small dataset) or not properly compared (own metrics, none shared dataset), often leading to poor generalization performance. To address, these issues, we developed a model that uses a multiscale and multilevel feature extraction strategy for COVID19 segmentation and extensively validated it on several datasets to assess its generalization capability for other segmentation tasks on similar organs. The proposed model uses a novel encoder and decoder with a proposed kernel-based atrous spatial pyramid pooling module that is used at the bottom of the model to extract small features with a multistage skip connection concatenation approach. The results proved that our proposed model could be applied on a small-scale dataset and still produce generalizable performances on other segmentation tasks. The proposed model produced an efficient Dice score of 90% on a 100 cases dataset, 95% on the NSCLC dataset, 88.49% on the COVID19 dataset, and 97.33 on the StructSeg 2019 dataset as compared to existing state-of-the-art models. The proposed solution could be used for COVID19 segmentation in clinic applications. The source code is publicly available at https://github.com/RespectKnowledge/Mutiscale-based-Covid-_segmentation-usingDeep-Learning-models.

3.
Int J Environ Res Public Health ; 20(10)2023 05 19.
Article in English | MEDLINE | ID: covidwho-20234254

ABSTRACT

A growing number of various studies focusing on different aspects of the COVID-19 pandemic are emerging as the pandemic continues. Three variables that are most commonly used to describe the course of the COVID-19 pandemic worldwide are the number of confirmed SARS-CoV-2 cases, the number of confirmed COVID-19 deaths, and the number of COVID-19 vaccine doses administered. In this paper, using the multiscale geographically weighted regression, an analysis of the interrelationships between the number of confirmed SARS-CoV-2 cases, the number of confirmed COVID-19 deaths, and the number of COVID-19 vaccine doses administered were conducted. Furthermore, using maps of the local R2 estimates, it was possible to visualize how the relations between the explanatory variables and the dependent variables vary across the study area. Thus, analysis of the influence of demographic factors described by the age structure and gender breakdown of the population over the course of the COVID-19 pandemic was performed. This allowed the identification of local anomalies in the course of the COVID-19 pandemic. Analyses were carried out for the area of Poland. The results obtained may be useful for local authorities in developing strategies to further counter the pandemic.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19 Vaccines , Poland/epidemiology , Pandemics , SARS-CoV-2 , Spatial Regression
4.
Biomedical Signal Processing and Control ; 85:105079, 2023.
Article in English | ScienceDirect | ID: covidwho-20230656

ABSTRACT

Combining transformers and convolutional neural networks is considered one of the most important directions for tackling medical image segmentation problems. To learn the long-range dependencies and local contexts, previous approaches embedded a convolutional layer into feedforward neural network inside the transformer block. However, a common issue is the instability during training since large differences in amplitude across layers by pre-layer normalization. Furthermore, multi-scale features were directly fused using the transformer from the encoder to decoder, which could disrupt valuable information for segmentation. To address these concerns, we propose Advanced TransFormer (ATFormer), a novel hybrid architecture that combines convolutional neural networks and transformers for medical image segmentation. First, the traditional transformer block has been refined into an Advanced Transformer Block, which adopts post-layer normalization to obtain mild activation values and employs the scaled cosine attention with shifted window for accurate spatial information. Second, the Progressive Guided Fusion module is introduced to make multi-scale features more discriminative while reducing the computational complexity. Experimental results on the ACDC, COVID-19 CT-Seg, and Tumor datasets demonstrate the significant advantage of ATFormer over existing methods that rely solely on convolutional neural networks, transformers, or their combination.

5.
COVID-19 and a World of Ad Hoc Geographies: Volume 1 ; 1:871-887, 2022.
Article in English | Scopus | ID: covidwho-2325927

ABSTRACT

Since the 2011 uprisings, Tunisia has been going through a delicate political transition while the socio-economic context is continuously deteriorating. Our analysis focuses on the exceptional period of the lock down (from the 20th of March 2020 to mid-June 2020). With a large portion of the population deprived of their daily informal jobs, the collateral damages of the coercive measures were immediately visible in Tunisia. By critically engaging with how the coronavirus was politically managed in Tunisia, we propose to map and document plural impacts of the pandemic contextualizing this crisis for specific groups of population and territories: Tunisia's young population from hinterland regions (symptomatic of the 2011 uprising and the territorial division) and illegalized sub-Saharan migrants. By focusing on precarious, invisibilized and marginalized groups, we question processes of politization of socio-economic claims under the circumstantial constraints of the pandemic. Besides, this period (re-)activates new forms of civil society mobilization as well as cooperation through solidarity. In a nutshell, the effects of COVID-19 allow us to observe the transformations in the Tunisian post-revolutionary context through a much broader lens. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

6.
Population and Economics ; 6(4):189-208, 2022.
Article in English | ProQuest Central | ID: covidwho-2319887

ABSTRACT

The article presents results of the multi-scale analysis of the processes of coronavirus infection spread and its impact on the demographic situation in the world, Russia and regions of the South of the European part of Russia. The methodological basis of the study was the principles of geoinformation monitoring, making it possible to process and visualize large volumes of diverse materials. The information base was statistical data from the Russian and foreign sources reflecting the spread of coronavirus infection at various spatial levels from global to regional-local. The characteristic features of changes in the parameters of the disease during its active expansion are described. The article also deals with dynamics in demographic indicators and identifies trends in their widespread deterioration. The contribution of the South of European Russia macro-region to the all-Russian Covid-19 situation is determined. Development of the coronavirus pandemic at the level of municipal districts is analyzed using individual regions as an example. The study identifies main factors of the Covid-19 pandemic development and demonstrates some of its features and consequences in the largest urban agglomerations.

7.
Imaging Science Journal ; : 1-17, 2023.
Article in English | Academic Search Complete | ID: covidwho-2318956

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) causes severe respiratory problems in humans. The Chest X-ray (CXR) imaging technique majorly assists in detecting abnormalities in the chest and lung areas caused by COVID-19. Hence, developing an automatic system for CXR-based COVID-19 detection is vital for disease diagnosis. To accomplish this requirement, an enhanced Residual Network (ResNet) model is proposed in this paper for accurate COVID-19 detection. The proposed model combines the Depthwise Separable Convolutional ResNet and Pyramid dilated module(DSC-ResNet-PDM) for deep feature extraction. Employing the DSC layer minimizes the number of parameters to mitigate the overfitting issue. Further, the pyramid dilated module is used for extracting multi-scale features. The extracted features are finally fed into the optimized Medium Gaussian kernel Support Vector Machine classifier (MGKSVM) for COVID-19 detection. The proposed model attained an accuracy of 99.5%, which is comparatively higher than the standard ResNet50 and ResNet101 models. [ FROM AUTHOR] Copyright of Imaging Science Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

8.
Decision Analytics Journal ; : 100247, 2023.
Article in English | ScienceDirect | ID: covidwho-2316340

ABSTRACT

This study uses the wavelet leaders method to examine multifractal characteristics and multiscale entropy patterns in price returns of four energy markets, Brent, West Texas Intermediate (WTI), gasoline, and heating oil, before and during the COVID-19 pandemic. The results show that price returns in all energy markets exhibit multifractal properties before and during the pandemic. In addition, the level of multifractals intensified during the pandemic only in price returns of Brent, WTI, and gasoline markets. On the contrary, the level of multifractals decreased during the pandemic in price returns of the heating oil market. The empirical results based on multiscale entropy show strong evidence of a reduced irregularity in energy market price returns during the COVID-19 pandemic. Our empirical findings have important managerial implications for traders and investors in the energy market.

9.
34th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2022 ; 2022-October:931-938, 2022.
Article in English | Scopus | ID: covidwho-2313830

ABSTRACT

Biometric identification by contactless fingerprinting has been a trend in recent years, reinforced by the pandemic of the new coronavirus (COVID-19). Contactless acquisition tends to be a more hygienic acquisition category with greater user acceptance because it is less invasive and does not require the use of a surface touched by other people as traditional acquisition does. However, this area presents some challenging tasks. Contact-based sensors still generally provide greater biometric effectiveness since the minutiae are more pronounced due to the high contrast between ridges and valleys. On the other hand, contactless images typically have low contrast, so the methods fail with spurious or undetectable details, demonstrating the need for further studies in this area. In this work, we propose and analyze a robust scaled deep learning model for extracting minutiae in contactless fingerprint images. The results, evaluated on three datasets, show that the proposed method is competitive against other minutia extraction algorithms and commercial software. © 2022 IEEE.

10.
Technological and Economic Development of Economy ; 29(2):353-381, 2023.
Article in English | ProQuest Central | ID: covidwho-2313614

ABSTRACT

Under the development pattern of the "double cycle”, optimizing urban economic resilience is tremendously meaningful to improving a city's affordability and the adaptability of the economy and to promoting the Chinese economy to develop with high quality. Based on Baidu migration big data perspective, exploratory spatial data analysis (ESDA) and multi-scale geographical weighted regression (MGWR) model were used to analyze the spatial characteristics and driving factors of economic resilience in 287 Chinese cities in 2019. The results show that (1) the number of low-level economically resilient cities is the largest and distributed continuously, while the number of high-level economically resilient cities is the lowest and distributed in clusters and blocks;(2) compared with the Pearl River Delta and Yangtze River Delta, the population accumulation characteristic of the Beijing- Tianjin-Hebei region is relatively slow;(3) Both net inflow of population after spring festival and daily flow scale are significantly correlated with urban economic resilience, and the former will affect urban economic resilience;and (4) the spatial heterogeneity of each factor driving is significant, and they have different impact scales. The impact intensity is as follows: net population inflow > innovation ability > public financial expenditure > financial efficiency > urban size.

11.
Front Psychiatry ; 14: 1014866, 2023.
Article in English | MEDLINE | ID: covidwho-2315447

ABSTRACT

Background: Emergency psychological responding professionals are recruited to help deal with psychological issues as the Corona Virus Disease 2019 (COVID-19) continues. We aimed to study the neural correlates of psychological states in these emergency psychological responding professionals after exposure to COVID-19 related trauma at baseline and after 1-year self-adjustment. Methods: Resting-state functional MRI (rs-fMRI) and multiscale network approaches were utilized to evaluate the functional brain activities in emergency psychological professionals after trauma. Temporal (baseline vs. follow-up) and cross-sectional (emergency psychological professionals vs. healthy controls) differences were studied using appropriate t-tests. The brain functional network correlates of psychological symptoms were explored. Results: At either time-point, significant changes in the ventral attention (VEN) and the default mode network (DMN) were associated with psychological symptoms in emergency psychological professionals. In addition, the emergency psychological professionals whose mental states improved after 1 year demonstrated altered intermodular connectivity strength between several modules in the functional network, mainly linking the DMN, VEN, limbic, and frontoparietal control modules. Conclusion: Brain functional network alterations and their longitudinal changes varied across groups of EPRT with distinctive clinical features. Exposure to emergent trauma does cause psychological professionals to produce DMN and VEN network changes related to psychological symptoms. About 65% of them will gradually adjust mental states, and the network tends to be rebalanced after a year.

12.
J R Soc Interface ; 20(202): 20220827, 2023 05.
Article in English | MEDLINE | ID: covidwho-2315220

ABSTRACT

Early estimates of the transmission properties of a newly emerged pathogen are critical to an effective public health response, and are often based on limited outbreak data. Here, we use simulations to investigate how correlations between the viral load of cases in transmission chains can affect estimates of these fundamental transmission properties. Our computational model simulates a disease transmission mechanism in which the viral load of the infector at the time of transmission influences the infectiousness of the infectee. These correlations in transmission pairs produce a population-level convergence process during which the distributions of initial viral loads in each subsequent generation converge to a steady state. We find that outbreaks arising from index cases with low initial viral loads give rise to early estimates of transmission properties that could be misleading. These findings demonstrate the potential for transmission mechanisms to affect estimates of the transmission properties of newly emerged viruses in ways that could be operationally significant to a public health response.


Subject(s)
Disease Outbreaks , SARS-CoV-2 , Viral Load , Basic Reproduction Number
13.
Signal Image Video Process ; : 1-8, 2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-2312833

ABSTRACT

In the field of diagnosis and treatment planning of Coronavirus disease 2019 (COVID-19), accurate infected area segmentation is challenging due to the significant variations in the COVID-19 lesion size, shape, and position, boundary ambiguity, as well as complex structure. To bridge these gaps, this study presents a robust deep learning model based on a novel multi-scale contextual information fusion strategy, called Multi-Level Context Attentional Feature Fusion (MLCA2F), which consists of the Multi-Scale Context-Attention Network (MSCA-Net) blocks for segmenting COVID-19 lesions from Computed Tomography (CT) images. Unlike the previous classical deep learning models, the MSCA-Net integrates Multi-Scale Contextual Feature Fusion (MC2F) and Multi-Context Attentional Feature (MCAF) to learn more lesion details and guide the model to estimate the position of the boundary of infected regions, respectively. Practically, extensive experiments are performed on the Kaggle CT dataset to explore the optimal structure of MLCA2F. In comparison with the current state-of-the-art methods, the experiments show that the proposed methodology provides efficient results. Therefore, we can conclude that the MLCA2F framework has the potential to dramatically improve the conventional segmentation methods for assisting clinical decision-making.

14.
Front Public Health ; 10: 1036586, 2022.
Article in English | MEDLINE | ID: covidwho-2310598

ABSTRACT

This paper addresses the spatial pattern of urban biomedicine innovation networks by separately using four scales, i.e., the national scale, interregional scale, urban agglomeration scale, and provincial scale, on the basis of Chinese biomedicine patent data from the incoPat global patent database (GPD) (2001-2020) and using the method of social network analysis (SNA). Through the research, it is found that (1) on the national scale, the Chinese biomedicine innovation network becomes denser from west to the east as its complexity continuously increases. Its spatial structure takes the form of a radial network pattern with Beijing and Shanghai as its centers. The COVID-19 pandemic has not had an obvious negative impact on this network at present. (2) On the interregional scale, the strength of interregional network ties is greater than that of intraregional network ties. The eastern, central and western biomedicine innovation networks appear to be heterogeneous networks with regional central cities as the cores. (3) At the urban agglomeration scale, the strength of intraurban-agglomeration network ties is greater than that of interurban-agglomeration network ties. The three major urban agglomerations have formed radial spatial patterns with central cities as the hubs. (4) At the provincial scale, the intraprovincial networks have poor connectivity and low internal ties strength, which manifest as core-periphery structures with the provincial capitals as centers. Our research conclusion helps to clarify the current accumulation of technology and offer guidance for the development of China's biomedicine industry.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/epidemiology , China , Health Occupations , Asian People
15.
ISPRS International Journal of Geo-Information ; 12(4):148, 2023.
Article in English | ProQuest Central | ID: covidwho-2292894

ABSTRACT

To understand the complex phenomena in social space and monitor the dynamic changes in people's tracks, we need more cross-scale data. However, when we retrieve data, we often ignore the impact of multi-scale, resulting in incomplete results. To solve this problem, we proposed a management method of multi-granularity dimensions for spatiotemporal data. This method systematically described dimension granularity and the fuzzy caused by dimension granularity, and used multi-scale integer coding technology to organize and manage multi-granularity dimensions, and realized the integrity of the data query results according to the correlation between the different scale codes. We simulated the time and band data for the experiment. The experimental results showed that: (1) this method effectively solves the problem of incomplete query results of the intersection query method. (2) Compared with traditional string encoding, the query efficiency of multiscale integer encoding is twice as high. (3) The proportion of different dimension granularity has an impact on the query effect of multi-scale integer coding. When the proportion of fine-grained data is high, the advantage of multi-scale integer coding is greater.

16.
ISPRS International Journal of Geo-Information ; 12(4):163, 2023.
Article in English | ProQuest Central | ID: covidwho-2306508

ABSTRACT

In recent years, environmental degradation and the COVID-19 pandemic have seriously affected economic development and social stability. Addressing the impact of major public health events on residents' willingness to pay for environmental protection (WTPEP) and analyzing the drivers are necessary for improving human well-being and environmental sustainability. We designed a questionnaire to analyze the change in residents' WTPEP before and during COVID-19 and an established ordinary least squares (OLS), spatial lag model (SLM), spatial error model (SEM), geographically weighted regression (GWR), and multiscale GWR to explore driver factors and scale effects of WTPEP based on the theory of environment Kuznets curve (EKC). The results show that (1) WTPEP is 0–20,000 yuan before COVID-19 and 0–50,000 yuan during COVID-19. Residents' WTPEP improved during COVID-19, which indicates that residents' demand for an ecological environment is increasing;(2) The shapes and inflection points of the relationships between income and WTPEP are spatially heterogeneous before and during COVID-19, but the northern WTPEP is larger than southern, which indicates that there is a spatial imbalance in WTPEP;(3) Environmental degradation, health, environmental quality, and education are WTPEP's significant macro-drivers, whereas income, age, and gender are significant micro-drivers. Those factors can help policymakers better understand which factors are more suitable for macro or micro environmental policy-making and what targeted measures could be taken to solve the contradiction between the growing ecological environment demand of residents and the spatial imbalance of WTPEP in the future.

17.
IEEE Transactions on Instrumentation and Measurement ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-2296656

ABSTRACT

Recently, accurate segmentation of COVID-19 infection from computed tomography (CT) scans is critical for the diagnosis and treatment of COVID-19. However, infection segmentation is a challenging task due to various textures, sizes and locations of infections, low contrast, and blurred boundaries. To address these problems, we propose a novel Multi-scale Wavelet Guidance Network (MWG-Net) for COVID-19 lung infection by integrating the multi-scale information of wavelet domain into the encoder and decoder of the convolutional neural network (CNN). In particular, we propose the Wavelet Guidance Module (WGM) and Wavelet &Edge Guidance Module (WEGM). Among them, the WGM guides the encoder to extract infection details through the multi-scale spatial and frequency features in the wavelet domain, while the WEGM guides the decoder to recover infection details through the multi-scale wavelet representations and multi-scale infection edge information. Besides, a Progressive Fusion Module (PFM) is further developed to aggregate and explore multi-scale features of the encoder and decoder. Notably, we establish a COVID-19 segmentation dataset (named COVID-Seg-100) containing 5800+ annotated slices for performance evaluation. Furthermore, we conduct extensive experiments to compare our method with other state-of-the-art approaches on our COVID-19-Seg-100 and two publicly available datasets, i.e., MosMedData and COVID-SemiSeg. The results show that our MWG-Net outperforms state-of-the-art methods on different datasets and can achieve more accurate and promising COVID-19 lung infection segmentation. IEEE

18.
Biomed Signal Process Control ; 86: 104939, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-2298770

ABSTRACT

Coronavirus Disease 2019 (COVID-19) spreads around the world, seriously affecting people's health. Computed tomography (CT) images contain rich semantic information as an auxiliary diagnosis method. However, the automatic segmentation of COVID-19 lesions in CT images faces several challenges, including inconsistency in size and shape of the lesion, the high variability of the lesion, and the low contrast of pixel values between the lesion and normal tissue surrounding the lesion. Therefore, this paper proposes a Fully Feature Fusion Based Neural Network for COVID-19 Lesion Segmentation in CT Images (F3-Net). F3-Net uses an encoder-decoder architecture. In F3-Net, the Multiple Scale Module (MSM) can sense features of different scales, and Dense Path Module (DPM) is used to eliminate the semantic gap between features. The Attention Fusion Module (AFM) is the attention module, which can better fuse the multiple features. Furthermore, we proposed an improved loss function L o s s C o v i d - B C E that pays more attention to the lesions based on the prior knowledge of the distribution of COVID-19 lesions in the lungs. Finally, we verified the superior performance of F3-Net on a COVID-19 segmentation dataset, experiments demonstrate that the proposed model can segment COVID-19 lesions more accurately in CT images than benchmarks of state of the art.

19.
Bioengineering (Basel) ; 10(4)2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2293010

ABSTRACT

COVID-19 is an ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Although it primarily attacks the respiratory tract, inflammation can also affect the central nervous system (CNS), leading to chemo-sensory deficits such as anosmia and serious cognitive problems. Recent studies have shown a connection between COVID-19 and neurodegenerative diseases, particularly Alzheimer's disease (AD). In fact, AD appears to exhibit neurological mechanisms of protein interactions similar to those that occur during COVID-19. Starting from these considerations, this perspective paper outlines a new approach based on the analysis of the complexity of brain signals to identify and quantify common features between COVID-19 and neurodegenerative disorders. Considering the relation between olfactory deficits, AD, and COVID-19, we present an experimental design involving olfactory tasks using multiscale fuzzy entropy (MFE) for electroencephalographic (EEG) signal analysis. Additionally, we present the open challenges and future perspectives. More specifically, the challenges are related to the lack of clinical standards regarding EEG signal entropy and public data that can be exploited in the experimental phase. Furthermore, the integration of EEG analysis with machine learning still requires further investigation.

20.
IEEE Transactions on Circuits and Systems for Video Technology ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-2269432

ABSTRACT

The aim of camouflaged object detection (COD) is to find objects that are hidden in their surrounding environment. Due to the factors like low illumination, occlusion, small size and high similarity to the background, COD is recognized to be a very challenging task. In this paper, we propose a general COD framework, termed as MSCAF-Net, focusing on learning multi-scale context-aware features. To achieve this target, we first adopt the improved Pyramid Vision Transformer (PVTv2) model as the backbone to extract global contextual information at multiple scales. An enhanced receptive field (ERF) module is then designed to refine the features at each scale. Further, a cross-scale feature fusion (CSFF) module is introduced to achieve sufficient interaction of multi-scale information, aiming to enrich the scale diversity of extracted features. In addition, inspired the mechanism of the human visual system, a dense interactive decoder (DID) module is devised to output a rough localization map, which is used to modulate the fused features obtained in the CSFF module for more accurate detection. The effectiveness of our MSCAF-Net is validated on four benchmark datasets. The results show that the proposed method significantly outperforms state-of-the-art (SOTA) COD models by a large margin. Besides, we also investigate the potential of our MSCAF-Net on some other vision tasks that are highly related to COD, such as polyp segmentation, COVID-19 lung infection segmentation, transparent object detection and defect detection. Experimental results demonstrate the high versatility of the proposed MSCAF-Net. The source code and results of our method are available at https://github.com/yuliu316316/MSCAF-COD. IEEE

SELECTION OF CITATIONS
SEARCH DETAIL